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HYDRODYNAMIC ANALYSIS OF THE PROCESS OF MAKING THREE-LAYER 

OPTICAL FIBERS AND CALCULATION OF THE FIELD OF ELASTIC STRESSES 

AND BIREFRINGENCE 

A. L. Yarin UDC 539.377+532. 
63+681.7.068.2 

One of the methods used to make semifinished products for the manufacture of polari- 
zation-maintaining optical fibers is based on the use of the surface tension of glass in 
the liquid state [i]. The initial cross section of the semifinished product is shown in 
Fig. i, where the region 0 corresponds to the core through which the signal propagates. 
The numbers 1 and 2 denote the straining and cladding sheaths, which are designed to create 
a stress state in the core. Part of the clad is removed - as shown by the dashed lines 
in Fig. i, for example - and the semifinished product is placed in a furnace and heated. 
During heating, the straining and cladding sheaths become liquid and the surface tension 
at the boundary F 2 begins to round it off. The resulting flow of molten glass deforms the 
boundary FI, which is subjected to a low surface tension. The deformation of this boundary 
causes it to lose its circular form. Meanwhile, the core remains solid and boundary F 0 
remains unchanged. After completion of the process of rounding-off of the boundary F~, 
a semifinished product with a noncircular boundary r I is obtained. Due to the difference 
in the thermoelastic properties of the materials in the straining and cladding layers of 
the semifinished product (and optical fiber), an anisotropic field of elastic stresses is 
created along with the associated birefringence. Accordingly, the core becomes capable 
of transmitting signals with a certain polarization. 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, 
pp. 23-30, May-June, 1990. Original article submitted June 6, 1988. 
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The authors of [2, 3] calculated the flow process in the roundoff of the external 
boundary of a two-layer semifinished product (in an approximation which ignored the effect 
of the core 0). The flow was assumed to have been a noninertial Stokes flow in these stud- 
ies. A comparison with experimental data was made in [3]. Here, we generalize the solu- 
tion in [2, 3] to the case of a three-layer semifinished product. As was shown in [2, 3], 
the structure of the semifinished product remains nearly the same in the fiber ultimately 
formed from it. Thus, the results of the solution of the hydrodynamic problem were used 
to calculate the elastic stresses and birefringence in the optical fiber. Several analyti- 
cal solutions to the elastic problem were obtained in [4, 5] for fibers having a cross 
section with a different structure. 

i. The hydrodynamic problem is solved with the use of the Stokes equations [6, 7], 
which converge to a biharmonic equation for the stream function ~*: 

AA~* = 0 (i.i) 

(here and below, A is the two-dimensional Laplace operator). 

Having constructed the general solution of Eq. (I.I) in the form of a Fourier series, 
we use a stream function ~* which is periodic with respect to O to find the fields of velo- 
city, pressure, and viscous stresses in regions 1 and 2. Some details of these calculations 
were presented in [2]. As in [2, 3], the boundary conditions of the hydrodynamic problem 
will be linearized here. We will assume that the boundaries F I and F2 are small perturba- 
tions of circles of radii R I and R 2. This approach retains all of the boundary conditions 
(11) from [2] but, in contrast to [2], employs the condition of adhesion at r = R 0 (the 
boundary of the core and sheath i) rather than the condition of finiteness of the solution 
at r = 0 

vrl = 0, Vel : 0 (1.2) 

(v  r and v 8 a r e  componen t s  o f  v e l o c i t y  in  p o l a r  c o o r d i n a t e s : t h e  a d d i t i o n a l  s u b s c r i p t  1 c o r -  
r e s p o n d s  t o  r e g i o n  1 ) .  

With t h e  s a t i s f a c t i o n  o f  Eq. ( 1 . 2 ) ,  ~1" ~ 0 on t h e  b o u n d a r y  r 0 ( r  = R0) .  C o n d i t i o n s  
( 1 . 2 )  i m p l y  t h a t  even  in  t h e  c a s e  o f  n o n s y m m e t r i c  r e m o v a l  o f  p a r t  o f  s h e a t h  2, t h e  s o l i d  
c o r e  i s  n o t  r o t a t e d  by v i s c o u s  s t r e s s e s  d u r i n g  t h e  r o u n d o f f  o f  b o u n d a r y  r 2 b e c a u s e  t h e  s e m i -  
f i n i s h e d  p r o d u c t  i s  c o m p r e s s e d  a t  i t s  two s o l i d  ends  ( a t  z = t L / 2 ,  where  z i s  t h e  a x i a l  
c o o r d i n a t e  and L i s  t h e  l e n g t h  o f  t h e  s e m i f i n i s h e d  p r o d u c t ) .  

Hav ing  c o n s t r u c t e d  t h e  g e n e r a l  s o l u t i o n  o f  t h e  h y d r o d y n a m i c  p r o b l e m  and h a v i n g  s a t i s -  
f i e d  b o u n d a r y  c o n d i t i o n s  ( 1 . 2 )  and (11)  f rom [ 2 ] ,  we o b t a i n  e x p r e s s i o n s  f o r  t h e  c o e f f i c i e n t s  
of Fourier series which describe the perturbations of boundaries F z and F 2 during the flow 
process: 

~i = ~  + ~ [an~(t)sinnO + b~(t)cosnO] ( i =  1,2) ( 1 . 3 )  
( 3 0  

(the boundaries correspond to r i = Ri(l + ~i)). 

The expressions for the coefficients ant and bni will be (14), (22), and (24)-(28) from 
[2], with the replacment of S I, S 2, S 7, and S s by 

S 1 = ~ {(-- 2n - -  4 + 2n 2) + [ n ( - -  2n 2 -- 2n) 7~ ' ' + 2 -  (n + i ) ( - -  2n + 4 - -  2n e) 7~"]}, 
r -  2. 

362 



S~ ,~1 {(2n~ _ 2n) + [(n - -  t) ( - -  2n ~ - -  2n) ?~, '~ n ( - -  2n + 4 - -  2,F-) ,,~n-~]i 
= ~t 2 - -  r e  ]J, 

S: = ,5~ {(-- 2 ,s  2n) + [ n ( - -  2n ~ ' -  2n)?o ~"+z - -  (n + t ) ( - -  2n ~ + 2n) ?~]} ,  

~5 { (_  2n~ + 2n) + [(n - -  I) ( - -  2n ~ - -  2n) ?~= - -  n ( - -  2n ~ + 2n) ?~'~-~]} s ,  = 

and t h e  a d d i t i o n  o f  S ~ s - S ~ s :  

S,~ = (n + 2) + [ - -  n~y~ ~+~ - -  (n + I ) ( - -  n + 2) y~)"], 

S,~ = n + [ - -  n ( n -  1) V~/' - -  n ( - -  n + 2) y~"-~] ,  

s,~ = i + [ . g " + ~ -  (~ + i )vY] ,  s,~ = ~+ [ ( ~ - ~ ) g ~ -  ~vy -~1 
as well as the replacement of kz-k s by 

]"~I = ($15S18 - -  SI~S17)(S3S8 - -  $2S9) - -  ($18SI '~  - -  ( 3 1 ~ / / ~ ) ) ( S l S s  - -  $ 2 S 7 ) :  

k~ = ( s ~ s ~ -  s ~ j . ) ( s  j ~  - s.~s~o)- s~j ,~(s~s~ - s~s~), 

~ = (s ,~s~ - s,os,~)(s~s~ - s ~ s ~ ) -  s ~ s ~ ( s , s ~  - s2s~), 

, k4 = ( S ~ S , s  - -  S ~ S , ~ ) S ~ S 8 ,  

~ = ( s ~ s ~  - s~s~ ) (s~s~  - s ~ s ~ ) -  ( ( s , J , ~ ) -  s~s~.~) (s~s~ - s~s~), 

k6  = ( S 1 5 S 1  $ - -  S16S17)($1Slo - -  $4S7) 'Jr" $17S13($1S8 - -  52S7), 
~ = (s~s,~ - s ~ o s & ( s ~ s ~ -  s~s~) + s~s~(s~s~  - s~s~), 

ks = --(S:t~Sxs - -  S ,~S ,~)S  ~S ~. 

(1.4) 

(1 .5 )  

( i . 6 )  

In Eq. (1.4), ~z and P2 are the viscosities of the molten glass in sheaths 1 and 2. At 
7o = 0, Eqs. (1.4)-(1.6) take the form of the results in [2, 3]. 

2. After the formation of the internal structure of a semifinished product with a 
noncircular boundary F~ has been completed, it is necessary to address the problem of the 
distribution of the elastic stresses in the semifinished product (or fiber). In the solu- 
tion of this problem, we make use of the coefficients of the Fourier series for Fz, corre- 
sponding to the moment of cessation of flow. The values of anl, and bn2, are known from the 
solution of the hydrodynamic problem; an2,~0 , bnl, z 0 (n ~ 2). The elastic deformation 

is assumed to be planar. 

In accordance with [8], calculation of the elastic stresses reduces to finding the 
potential X = ~ + ~, the sum of the thermoelastic potential ~ and the elastic potential ~. 
These quantities satisfy the equations 

i+~~ (T_T0) ' AA~= 0, A~ =F=-~ ( 2 . 1 )  

Here, v is the Poisson's ratio, which (together with the Young's modulus E) is henceforth 
assumed to be identical for the materials in regions 0-2; ~s is the coefficient of linear 

thermal expansion, which is different in regions 0-2; T is temperature (assumed to be con- 
stant over the cross section); T O is the temperature at which thermoelastic stresses are 
absent. In general, this temperature differs in regions 0-2. We will also use the nota- 

tion ~i = [(I + v)/(l - v)]'as - T0i) (i = 0, I, 2). 

The thermoelastic displacements ut =V~ are connected with the thermoelastic potential. 

They should be continuous on the internal boundaries of the regions, since the displace- 
ments connected with @ are automatically continuous. Thus, in an approximation which is 
linear with respect to the perturbations, the solution of the first equation of (2.1) must 
satisfy the conditions 

r = R~(I + ~,): a ~ r  = a~dar, a~#ao = a~dao. 

Here, the linearized conditions for the thermoelastic stresses, connected with ~ and denoted 
by the superscript t, 

r Ro: o~,0 ~ ~ = ~ ~rrl~ OrO0 = ORS1; 

= Orr l  rr2, OrOI + ( O r r l  - -  0001)  ~ - -  
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are satisfied automatically, while the thermoelastic stresses connected with ~ are also 
continuous. It should be noted that the thermoelastic displacements are negligibly small 
even compared to ~z,, although the stresses connected with them may turn out to be substan- 
tial because they contain the multiplier E. 

The stress Orr should be finite at r = 0, while on the circular external surface of 
the semifinished product (or fiber) 

r ~.~ R2: Orr = OrO ~- O. 

The stress field calculated bY this approach has the form 

~ ,  = ~ + ,  + ~ + 2 N  + ,~=~ I[Q~ (r~ + 2 - n ~) r '~ + 

+ T~ (n - -  n ~) r '~-~ - -  T ~  (n + n "~) r - ~ - ~  ] s i a  n 0 + [ V~ (~ + 2 - -  n ~) r '~ + 

+ Y~  (n - -  n ~) r '~-~ - -  Y ~  (n + n") r - '~-~ ] cos  nO} I ,  
J ( 2 . 2 )  ~o 

~ 0  = i -  ~ ~ . =  I [ Q .  ( ~  + ~) ~" + r .  ( o  _ ,0 r ~-~ - r ~  (,,~ + ~) ~-"-~] • 

X cos nO + [ Vn (-- n* --  n) r '~+ Yn (--n ~ + rt) r n-* + (n ~ + n)Y~nr-n-*]sin nO}, 

%o = -- t ---~-7 [ F - -  g + 2 W +  , ,=1  {[O'~(n+2)(n+l)r~' +n(n-- l )T ,~r '~-~+n(n+t)Tv~r- '~-~]s innO+ 

-1 

+ [V,~(n + 2 ) ( n +  t ) r '~  + n ( n - - l ) Y ~ r  "-~ + n ( n +  t )  Y ~ r - ~ - ~ ]  cos nO}] .  
d 

Here, we took the following in the calculations: 

t 
O, i ----- O, 

Ba 
c~= ~(~o-PO, ~=t ,  

! B~ B ~ 
+ 

w = ~ n~o ~ 
- -  ~ - -  7~RI ([5 0 - -  ~5~) - -  4..~ (~--15~); Qn= - ( ~ - [ ~ )  R~R-~n-x 2~, n+:t a .~ , ;  

b �9 V,~ = - -  ([h - -  ~ )  R~R-~ " - i  2~.+~ -~*, Y~, Y~ < oo,  Vi ;  

(2,3) 

ffi R2/RI. In 

T,/% 
(n >i 2) 

(n ~> 2) 

(~ - ~ )  ""*hi-"+" [ (n  + 1) v -~" - i], ~= o, 
2n 

: ~ " a R -n+2 

2n 

2nV~+ 1 , i = 2; 

PI- 821 b.1.W~+~ [0~ + i) ~-~-- t], i = 0, 

(~ - 82) b .~ .n i  ~+"- [(,~ + ~) ~,-~_ l l ,  ~ '-- 
2 n 

(81 - -  ~2) bnis(lz .4. l)/ '~lR2n+t i = 2 ;  
2n~in+l 

j O, i ~- O, 

O, i = t ,  
T z n  = ~ 

I (~, - ~ )  n~ +"~ 
2n 

! i -~- O, 

a n 1 , ,  i = 2; (~ ,  - -  8 , )  R~ +2 hal* ,  
2n 

accordance with [5], the coefficient of birefringence 

B = C(oxx--Oy.) = C[(Orr--Ooo) COS28--20rosin 28] 

i - ~ 2 ,  

(2.4) 
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(C is a proportionality factor whose value is known). Thus, with allowance for Eqs. (2.2) 
and (2.4), we find in the core (i = 0) that 

oo 

2CE n~=l B(r,O)-- l+  ~ {[O~(ni + n)r'~+ T,~(ni--n)rn-~]sin[( n - 2 )  O] + [Vn(ni + n)r'~ + Y~(n2--n)r'~-ilcos[(n--2)O]}. 

In the center Of the core at r = 0, B = B,: 

CE B, = ~ (~  --  ~1) (t - -  3? -4) b21,. ( 2 . 5 )  

As can be seen, in a linear approximation the value of B-'r is determined by a single coeffi- 
cient of Fourier series (1.3). This coefficient determines the harmonic cos28 and changes 
sign at y = 3 I/4. This finding is consistent with the results obtained in [4]. 

On the boundary of the core at r = R 0 - 0 

+ 
B o (0) = [ 2 C E  ( i l l  - -  Pi)/(l + ~)] = n=l~'a [ - -  2? 2~+3 (2  . 6 )  

t n-3 r .  y- in  1 + yVo t<"+  t) - - 1 ] ( n - - l )  {anl, sin [(n-- 2) O] + b,l ,  eos [(n --  2) 0]}- 
,I 

We can use Eqs. (2.2)-(2.4) to obtaina general expression for the dimensionless coefficient 

of birefringence in the cross section of the optical fiber. The expression has the form 

B' = (o,o) (,~ + . )  p,, 
[ i ce  @1 - ~ ) / 0  + ~)1 - ~=~ - -  2-e ~"+3 + T [(n + i )  l, -v~ - -  

- -  o3] (n -- l) 9 n-3} {an1* sin [(n --  2) O] + bnl, cos [(n --  2) 0]} --  % cos 20 
O 3 ( 2 . 7 )  

- -  -~ (n + t) 9-,~-2 {an1* sin [(n + 2) 0l + b,~l* cos [(n + 2) O]}; p = r.t/1, 

{ t, o < p < ~  + ~1,(o), 

= o, i + ;1,  (o) < p < ~, [i + ~ ,  (o)1; 

0, O < p < i  -I- ~1*(0), 
oh = l ,  I + ;1.  (o) < , o  < . r  It + ~ ,  (o)j; 

0, 0 ~< p < ' fo ,  

), Vo<p<  + 

?[1 + ~ ,  (0) 1. 

t t e re ,  ~1,  and ~2,  a r e  t h e  p e r t u r b a t i o n s  of  t h e  b o u n d a r i e s  r 1 and Pz c o r r e s p o n d i n g  to  t h e  
amount of cessation of the flow. These perturbations are known from the solution of the 

hydrodynamic problem. 

Equations (2.5) and (2.6) can be obtained from Eq. (2.7) with p = 0 and p = 70 - 0. 
It should also be noted that the expressions for the stresses in the cross section (2.2)-(2.3) 

can be changed to the following form: 

o~  = [E (Pl -- ~2)/( I + ~)1 = - -  + ~ + 28 + = 2@n+ 3 

, ~-2 (n+ , )  ] '(an~,sin O+ bn1, eosnO)}]; 

, %0(9,0) = _ _ ~ .  /[(nZ+n) n ~ ( (1~_}_~) ,?  __(0) 9 2 (anl*e'~ ~,'0 = [E (Pl ~) / (1  + ~,)] ,'--' ~,~+2 P + - v ~  ,~-2 (,~ + i )  o l p - , ~ - ~  
- ,,=~ [L 2v 

%0 = -[E (p~-- pz)/(l + v)] = -- --, + 25 + =1 2"~2n+2 

-'~-~l'a , n0)/]; __ (1~- -  n) ((n + 1) ~ - ~ n  r (n +2 t) ~ ]~ ~i sin nO + b,~l, cos 
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The results of the solution of the problem are shown in Fig. 2. Dashed lines i and 2 
show the initial (before heating and flow of the glass) configurations of boundaries r I and 
F2, while solid lines I' and 2' show the final configurations (i and 2' - circles). Circle 
3 corresponds to the boundary of the core. In the calculations, we modeled the plane cut- 
ting of the cladding sheath. It was assumed that y = 2, ~0 = 0.2, ~i/~2 = 0.2, while the 
ratio of the interracial force and surface tension ~i/~2 = 0. We used 19 modes of the 
Fourier series. The calculated final form of the straining sheath, corresponding to the 
initial configuration of the cross section of the semifinished product shown in Fig. 2, 
is close to an ellipse. The values of coefficient b21,, corresponding to different values 
of ~0 with the remaining parameters of the problem fixed, were as follows: Y0 = 0.i, 0.2, 
0.3, 0.4, 0.5; b21, = -0.2823, -0.2776, -0.2683, -0.2523, -0.2260. All of the values of Y0 
corresponded to a straining sheath having a final configuration in the form of an "ellipse." 
At small Y0 (~ 0.4), the form of the boundary F I is similar to the form obtained from the 
solution for a two-layer semifinished product [2, 3]. 

Figure 3 shows the distributions of dimensionless birefringence B' with a change in 
the polar angle 8 in the plane of the cross section of the optical fiber (the graphs may 
be continued symmetrically across the boundary 8 = 180~ Line i corresponds to r = R 0 - 
0, 1' to R 0 + 0; 2 to 2R0; 3 to 3R0; 4 to 4R0; 5 to 5R 0. In the last two cases, part of 
the circle on which B' is calculated lies within the cladding sheath. This is reflected 
in the discontinuities on curves 4 and 5. It was assumed in the calculations that ~0 = ~2. 

Thus, (60 - 61)/(61 - 62) = -I. 

Figure 4 illustrates the change in B' in the cross section of the optical fiber in 
the radial direction [ a) 8 = 90 ~ b) O = 0]. Birefringence in the cross section of a 
fiber similar to that being examined here (see Fig. 2) was calculated numerically in [9]. 
The results obtained in [9] are qualitatively close to the results of the analytical solu- 
tion obtained in the present study (see Fig. 4). It should be noted that the discontinui- 
ties in the relations B'(r) in Fig. 4 are connected with crossing of the interfaces between 
the core and straining sheath and between the latter and the claddingsheath. 
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STRUCTURE OF CHEMICALLY NONEQUILiBRIUM FLOWS 

WITH A SUDDEN CHANGE IN THE TEMPERATURE 

AND THE CATALYTIC PROPERTIES OF THE SURFACE 

V. V. Bogolepov, I. I. Lipatov, and L. A. Sokolov UDC 533.6.011.8 

The problem of chemically nonequilibrium flows in the neighborhood of a point where 
there is a sudden change in the temperature or the catalytic properties of the surface of 
a body is of undoubted interest from both theoretical and practical standpoints~ Thus, the 
authors of [1-4] studied the effect of discontinuity of the catalytic properties of the 
surface on flow about the body within the framework of laminar boundary layer theory or 
the theory of hypersonic viscous shock layers. The problem was examined in [5-7] in a 
formulation which was the same except for the introduction of a hypothetical boundary layer 
immediately after the point of discontinuity: with the use of simplifying assumptions, 
the investigators succeeded in obtaining an analytic solution for the flow functions in 
the neighborhood behind the point of discontinuity of surface catalytic properties. 

To describe the apstream propagation of disturbances from the point of discontinuity - 
such propagation being absent for boundary-value problems of the parabolic type [i-7] - the 
authors of [8-10] considered longitudinal diffusion in a certain region of the point; the 
substantiation for such a flow model for a removable discontinuity was presented in [ii], 
where investigators made use of the method of combinable asymptotic expansions [12]. This 
method has already been used to solve many problems involving singular perturbations in 
fluid mechanics (see [13, 14] and their bibliographies, for example). 

When analyzing the neighborhood of a point of discontinuity of surface catalytic pro- 
perties, it is necessary to consider that in the transition from a noncatalytic surface to 
a surface which is ideally catalytic (for example), the density of the gas near the surface 
of the body is increased by a characteristic amount, i.e., the streamlines are shifted 
toward the surface of the body and the flow moves past a hypothetical depression. The main 
assumption of Prandtl's classical boundary-layer theory - that ~he longitudinal g~adients 
of the flow functions are small compared to the transverse gradients - may be invalidated 
for such flows, and it becomes necessary to use the complete Navier-Stokes equations. A 
systematic analysis of the flow regimes around small two-dimensional irregularities on the 
surface of a body was performed in [15]. A solution to the problem of surface temperature 
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